Новый космический телескоп. Космический телескоп Джеймса Уэбба: все, что нужно знать о наследнике «Хаббла

Главные подрядчики Northrop Grumman
Ball Aerospace Волновой диапазон 0,6-28 мкм (части видимого и инфракрасного) Местонахождение точка Лагранжа L 2 системы Солнце - Земля (1,5 млн км от Земли в противоположную Солнцу сторону) Тип орбиты гало-орбита Дата запуска 30 Марта 2021 года Место запуска Куру Средство вывода на орбиту Ариан-5 или Ариан-6 Продолжительность 5-10 лет Дата схода с орбиты около 2024 Масса 6,2 тонны Тип телескопа телескоп-рефлектор системы Корша Диаметр около 6,5 м Площадь собирающей
поверхности около 25 м² Фокусное расстояние 131,4 м Научные инструменты
  • MIRI
прибор среднего инфракрасного диапазона
  • NIRCam
камера ближнего инфракрасного диапазона
  • NIRSpec
спектрограф ближнего инфракрасного диапазона
  • FGS/NIRISS
датчик точного наведения с устройством формирования изображения в ближнем инфракрасном диапазоне и бесщелевым спектрографом Сайт www.jwst.nasa.gov Медиафайлы на Викискладе

Первоначально назывался «Космический телескоп нового поколения» (англ. Next-generation space telescope, NGST ). В 2002 году переименован в честь второго руководителя НАСА Джеймса Уэбба (1906-1992), возглавлявшего агентство в 1961-1968 годах во время реализации программы Аполлон .

«Джеймс Уэбб» будет обладать составным зеркалом 6,5 метров в диаметре с площадью собирающей поверхности 25 м² , скрытым от инфракрасного излучения со стороны Солнца и Земли тепловым экраном . Телескоп будет размещён на гало-орбите в точке Лагранжа L 2 системы Солнце - Земля.

Проект представляет собой результат международного сотрудничества 17 стран , во главе которых стоит NASA , со значительным вкладом Европейского и Канадского космических агентств.

Текущие планы предусматривают, что телескоп будет запущен с помощью ракеты «Ариан-5 » в марте 2021 года . В этом случае первые научные исследования начнутся осенью 2021 года. Срок работы телескопа составит не менее пяти лет.

Задачи

Астрофизика

Первичными задачами JWST являются: обнаружение света первых звёзд и галактик , сформированных после Большого взрыва , изучение формирования и развития галактик, звёзд, планетных систем и происхождения жизни. Также «Уэбб» сможет рассказать о том, когда и где началась реионизация Вселенной и что её вызвало .

Экзопланетология

Телескоп позволит обнаруживать относительно холодные экзопланеты с температурой поверхности до 300 К (что практически равно температуре поверхности Земли), находящиеся дальше 12 а. е. от своих звёзд, и удалённые от Земли на расстояние до 15 световых лет. В зону подробного наблюдения попадут более двух десятков ближайших к Солнцу звезд. Благодаря JWST ожидается настоящий прорыв в экзопланетологии - возможностей телескопа будет достаточно не только для того, чтобы обнаруживать сами экзопланеты, но даже спутники и спектральные линии этих планет (что будет являться недостижимым показателем ни для одного наземного и космического телескопа до 2025 года, когда в строй будет введен Европейский чрезвычайно большой телескоп с диаметром зеркала в 39,3 м ) . Для поиска экзопланет будут также использованы данные, которые получил телескоп «Кеплер» начиная с 2009 года. Однако возможностей телескопа будет недостаточно для получения изображений найденных экзопланет. Такая возможность появится не раньше середины 2030-х годов, когда будет запущен телескоп-наследник «Джеймса Уэбба» - ATLAST .

Водные миры Солнечной системы

Инфракрасные инструменты телескопа будут использованы для изучения водных миров Солнечной системы - спутника Юпитера Европы и спутника Сатурна Энцелада . Инструмент NIRSpec будет использован для поиска биосигнатур (метан, метанол, этан) в гейзерах обоих спутников .

Инструмент NIRCam сможет получить изображения Европы в высоком разрешении, которые будут использованы для изучения её поверхности и поиска регионов с гейзерами и высокой геологической активностью. Состав зафиксированных гейзеров будет проанализирован с помощью инструментов NIRSpec и MIRI. Данные, полученные в ходе этих исследований, будут также использованы при исследовании Европы зондом Europa Clipper .

Для Энцелада, ввиду его удаленности и малых размеров, получить изображения в высоком разрешении не удастся, однако возможности телескопа позволят провести анализ молекулярного состава его гейзеров.

История

Изменение планируемой даты запуска и бюджета
Год Планируемая
дата запуска
Планируемый
бюджет
(млрд долларов)
1997 2007 0,5
1998 2007 1
1999 2007-2008 1
2000 2009 1,8
2002 2010 2,5
2003 2011 2,5
2005 2013 3
2006 2014 4,5
2008 2014 5,1
2010 не раньше сентября 2015 ≥6,5
2011 2018 8,7
2013 2018 8,8
2017 весна 2019 8,8
2018 не раньше марта 2020 ≥8,8
2018 30 марта 2021 9,66

Изначально запуск намечался на 2007 год, в дальнейшем переносился несколько раз (см. таблицу). Первый сегмент зеркала был установлен на телескоп лишь в конце 2015 года, а полностью главное составное зеркало было собрано только в феврале 2016 года. По данным на весну 2018 года, планируемая дата запуска была сдвинута на 30 марта 2021 года .

Финансирование

Стоимость проекта тоже неоднократно увеличивалась. В июне 2011 года стало известно, что стоимость телескопа превысила изначальные расчёты по меньшей мере в четыре раза. В бюджете НАСА, предложенном в июле 2011 года конгрессом, предполагалось прекращение финансирования строительства телескопа из-за плохого управления и превышения бюджета программы , но в сентябре того же года бюджет был пересмотрен, и проект сохранил финансирование . Окончательное решение о продолжении финансирования было принято сенатом 1 ноября 2011 года.

В 2013 году на постройку телескопа было выделено 626,7 млн долларов .

К весне 2018 года стоимость проекта возросла до 9,66 млрд долларов .

Изготовление оптической системы

Проблемы

Чувствительность телескопа и его разрешающая способность напрямую связаны с размером площади зеркала, которое собирает свет от объектов. Учёные и инженеры определили, что минимальный диаметр главного зеркала должен быть 6,5 метра , чтобы измерить свет от самых далёких галактик . Простое изготовление зеркала, подобного зеркалу телескопа «Хаббл », но большего размера, было неприемлемо, так как его масса была бы слишком большой, чтобы можно было запустить телескоп в космос. Команде учёных и инженеров необходимо было найти решение, чтобы новое зеркало имело 1/10 массы зеркала телескопа «Хаббл » на единицу площади .

Разработка и испытания

Производство

Для зеркала «Уэбба» используется особый тип бериллия . Он представляет собой мелкий порошок. Порошок помещается в контейнер из нержавеющей стали и прессуется в плоскую форму. После того как стальной контейнер удалён, кусок бериллия разрезается пополам, чтобы сделать две заготовки зеркала около 1,3 метра в поперечнике. Каждая заготовка зеркала используется для создания одного сегмента.

Процесс формирования зеркала начинается с вырезания излишков материала на оборотной стороне бериллиевой заготовки таким образом, что остаётся тонкая рёберная структура. Передняя же сторона каждой заготовки сглаживается с учётом положения сегмента в большом зеркале.

Затем поверхность каждого зеркала стачивается для придания формы, близкой к расчётной. После этого зеркало тщательно сглаживают и полируют. Этот процесс повторяется до тех пор, пока форма сегмента зеркала не станет близка к идеальной. Далее сегмент охлаждается до температуры −240 °C, и с помощью лазерного интерферометра производятся измерения размеров сегмента. Затем зеркало с учётом полученной информации проходит окончательную полировку.

По завершении обработки сегмента передняя часть зеркала покрывается тонким слоем золота для лучшего отражения инфракрасного излучения в диапазоне 0,6-29 мкм , и готовый сегмент проходит повторные испытания при криогенных температурах .

Тестирование

10 июля 2017 года - начало финального криогенного теста телескопа при температуре 37 в космическом центре имени Джонсона в Хьюстоне , который продлился 100 дней .

Помимо испытаний в Хьюстоне аппарат прошел серию механических проверок в центре космических полётов Годдарда, которые показали, что он сможет выдержать запуск с помощью тяжелой ракеты-носителя.

В начале февраля 2018 года гигантские зеркала и различные приборы доставлены на предприятие компании Northrop Grumman в Редондо-Бич для последнего этапа сборки телескопа. Там уже идет сооружение двигательного модуля телескопа и его солнцезащитного экрана. Когда вся конструкция будет собрана, её отправят на морском судне из Калифорнии во французскую Гвиану .

Оборудование

JWST будет иметь следующие научные инструменты для проведения исследования космоса:

  • Камера ближнего инфракрасного диапазона (англ. Near-Infrared Camera );
  • Прибор для работы в среднем диапазоне инфракрасного излучения (англ. Mid-Infrared Instrument, MIRI );
  • Спектрограф ближнего инфракрасного диапазона (англ. Near-Infrared Spectrograph, NIRSpec );
  • Датчик точного наведения (англ. Fine Guidance Sensor, FGS ) и устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф (англ. Near InfraRed Imager and Slitless Spectrograph, NIRISS ).

Камера ближнего инфракрасного диапазона

Камера ближнего инфракрасного диапазона является основным блоком формирования изображения «Уэбба» и будет состоять из массива ртутно-кадмиево-теллуровых детекторов . Рабочий диапазон прибора составляет от 0,6 до 5 мкм . Его разработка поручена Аризонскому университету и Центру продвинутых технологий компании Lockheed Martin .

В задачи прибора входят:

  • обнаружение света от самых ранних звёзд и галактик на стадии их формирования;
  • изучение звёздных населений в ближайших галактиках ;
  • изучение молодых звёзд Млечного Пути и объектов пояса Койпера ;
  • определение морфологии и цвета галактик при сильном красном смещении ;
  • определение кривых блеска дальних сверхновых ;
  • создание карты тёмной материи с помощью гравитационного линзирования .

Многие объекты, которые «Уэбб» будет изучать, излучают настолько мало света, что телескопу для анализа спектра необходимо собирать свет от них в течение сотен часов. Чтобы изучить тысячи галактик за 5 лет работы телескопа, спектрограф был разработан с возможностью наблюдения за 100 объектами на площади неба 3×3 угловых минуты одновременно. Для этого учёные и инженеры Годдарда разработали новую технологию микрозатворов для управления светом, входящим в спектрограф .

Суть технологии, позволяющей получать 100 одновременных спектров, заключается в микроэлектромеханической системе, именуемой «массив микрозатворов» (англ. microshutter array ). У ячеек микрозатворов спектрографа NIRSpec есть крышки, которые открываются и закрываются под действием магнитного поля. Каждая ячейка размером 100 на 200 мкм индивидуально управляется и может быть открытой или закрытой, предоставляя или, наоборот, блокируя часть неба для спектрографа , соответственно.

Именно эта регулируемость позволяет прибору делать спектроскопию такого количества объектов одновременно. Поскольку объекты, которые будет исследовать NIRSpec , находятся далеко и тусклы, инструмент нуждается в подавлении излучения от более близких ярких источников. Микрозатворы работают подобно тому, как люди смотрят искоса, чтобы сосредоточиться на объекте, блокируя нежелательный источник света.

Прибор уже разработан и в данный момент проходит испытания в Европе .

Прибор для работы в среднем диапазоне инфракрасного излучения

Прибор для работы в среднем диапазоне инфракрасного излучения (5 -28 мкм ) состоит из камеры с датчиком, имеющим разрешение 1024×1024 пикселя , и спектрографа .

MIRI состоит из трёх массивов мышьяко -кремниевых детекторов. Чувствительные детекторы этого прибора позволят увидеть красное смещение далёких галактик , формирование новых звёзд и слабо видимые кометы , а также объекты в поясе Койпера . Модуль камеры предоставляет возможность съёмки объектов в широком диапазоне частот с большим полем зрения, а модуль спектрографа обеспечивает спектроскопию среднего разрешения с меньшим полем зрения, что позволит получать подробные физические данные об удалённых объектах.

Номинальная рабочая температура для MIRI - 7 . Такая температура не может быть достигнута использованием только пассивной системы охлаждения. Вместо этого, охлаждение производится в два этапа: установка предварительного охлаждения на основе пульсационной трубы охлаждает прибор до 18 К , затем теплообменник с адиабатическим дросселированием (эффект Джоуля - Томсона) понижает температуру до 7 К .

MIRI разрабатывает группа под названием MIRI Consortium, состоящая из ученых и инженеров из стран Европы, команды сотрудников Лаборатории реактивного движения в Калифорнии и учёных из ряда институтов США .

FGS/NIRISS

Датчик точного наведения (FGS ) и устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф (NIRISS ) будут упакованы вместе в «Уэббе», но по сути это два разных устройства . Оба устройства разрабатываются Канадским космическим агентством , и они уже получили прозвище «канадские глаза» по аналогии с «канадской рукой ». Этот инструмент уже прошел интегрирование со структурой ISIM в феврале 2013 года.

Датчик точного наведения

Датчик точного наведения (FGS ) позволит «Уэббу» производить точное наведение, чтобы он мог получать изображения высокого качества.

Камера FGS может формировать изображение из двух смежных участков неба размером 2,4×2,4 угловых минуты каждый, а также считывать информацию 16 раз в секунду с небольших групп пикселей размером 8×8, чего достаточно для нахождения соответствующей опорной звезды с 95-процентной вероятностью в любой точке неба, включая высокие широты.

Основные функции FGS включают в себя:

  • получение изображения для определения положения телескопа в пространстве;
  • получение предварительно выбранных опорных звёзд;
  • обеспечение системы управления положением англ. Attitude Control System измерениями центроида опорных звёзд со скоростью 16 раз в секунду.

Во время вывода на орбиту телескопа FGS также будет сообщать об отклонениях при развёртывании главного зеркала.

Устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф

Устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф (NIRISS ) работают в диапазоне 0,8 -5,0 мкм и является специализированным инструментом с тремя основными режимами, каждый из которых работает с отдельным диапазоном.

NIRISS будет использоваться для выполнения следующих научных задач:

  • получение «первого света »;
  • обнаружение экзопланет ;
  • получение их характеристик;
  • транзитная спектроскопия.

См. также

Примечания

Примечания

Сноски

  1. Jim Bridenstine on Twitter: "The James Webb Space Telescope will produce first of its kind, world-class science. Based on recommendations by an Independent Review Board, the n...
  2. With further delays, Webb telescope at risk of seeing its rocket retired | Ars Technica
  3. https://www.ama-science.org/proceedings/details/368
  4. NASA Completes Webb Telescope Review, Commits to Launch in Early 2021 (англ.) . NASA (27 June 2018). Дата обращения 28 июня 2018.
  5. Icy Moons, Galaxy Clusters, and Distant Worlds Among Selected Targets for James Webb Space Telescope (неопр.) (15 июня 2017).
  6. https://nplus1.ru/news/2017/06/16/webb-telescope (неопр.) (16 июня 2017).
  7. Webb Science: The End of the Dark Ages: First Light and Reionization (неопр.) . НАСА . Дата обращения 18 марта 2013. Архивировано 21 марта 2013 года.
  8. Щепотка бесконечности (неопр.) (25 марта 2013). Архивировано 4 апреля 2013 года.
  9. «Кеплер» нашел десять новых возможных двойников Земли (неопр.) (19 июня 2017).
  10. NASA’s Webb Telescope Will Study Our Solar System’s “Ocean Worlds” (неопр.) (24 августа 2017).
  11. Berardelli, Phil . Next Generation Space Telescope will peer back to the beginning of time and space , CBS (27 октября 1997).
  12. The Next Generation Space Telescope (NGST) (неопр.) . University of Toronto (27 ноября 1998).
  13. Reichhardt, Tony. US astronomy: Is the next big thing too big? (англ.) // Nature. - 2006. - March (vol. 440 , no. 7081 ). - P. 140-143 . - DOI :10.1038/440140a . - Bibcode : 2006Natur.440..140R .
  14. Cosmic Ray Rejection with NGST (неопр.) .
  15. MIRI spectrometer for NGST (неопр.) (недоступная ссылка) . Архивировано 27 сентября 2011 года.
  16. NGST Weekly Missive (неопр.) (25 апреля 2002).
  17. NASA Modifies James Webb Space Telescope Contract (неопр.) (12 ноября 2003).

Лично я пришел к выводу, что телескоп James Webb несет слишком много изобретений, слишком много риска и является проектом за гранью разумного. - таковы прямые слова руководителя независимой контрольной комиссии Тома Янга на заседании комитета по астрономии и астрофизике совета по космическим исследованиям Национальной академии наук США 29 октября. Впрочем, он тут же уточнил, что не является противником телескопа и не сомневается, что проект может быть завершен успешно. Действительно, положение дел вызывает противоречивые чувства - с одной стороны, это интереснейший проект, который должен дать науке новые возможности, с другой - превышения сроков и стоимости достигли воистину астрономических величин. В целом история проекта заставляет задуматься о своевременности воплощения технологий и критериях, когда лучше остановиться. Ну и, наконец, уроки «Джеймса Уэбба» категорически необходимо усвоить, начиная гораздо больший проект окололунной орбитальной станции.

Фото NASA/Desiree Stover

Чтобы комментарий Янга был более понятен, стоит пояснить контекст. В 2010 году, когда проект телескопа «Джеймс Уэбб» в очередной раз нарушил ранее объявленные сроки и стоимость, сенатор Барбара Микульски (Barbara Mikulski) потребовала собрать независимую контрольную комиссию. По результатам ее работы NASA реструктуризовало проект и заверило Конгресс США, что стоимость не превысит 8 миллиардов долларов, и телескоп будет запущен не позже осени 2018. Но осенью 2017 сроки съехали на 2019, а весной 2018 - на 2020. NASA, не дожидаясь сенаторского гнева, собрало новую независимую комиссию самостоятельно. В нее вошли авторитетные авиакосмические эксперты, а главой стал работавший в Lockheed Martin Том Янг.


Том Янг, фото NASA/Билл Ингалс

Комиссия завершила работу в мае 2018 и 31 числа представила отчет. В нем, опираясь на оценки трудоемкости и сроков проекта в условиях различных , рекомендовали установить дату запуска на март 2021. Результатом этого стало бы превышение потолка в 8 миллиардов, установленного Конгрессом. Также в отчете было сформулировано 32 рекомендации по улучшению процессов.

Теперь переносимся в осень 2018. 29 октября состоялось заседание комитета по астрономии и астрофизике совета по космическим исследованиям Национальной академии наук США. Нет ничего удивительного, что на нем выступал Том Янг. Портал SpaceNews приводит его слова:

Есть люди, которые поддержат JWST любой ценой, и есть те, кто поддерживают его, но возмущены увеличением сроков и стоимости. Я считаю, что проект не закроют, и политический процесс не сделает телескопу ничего плохого.
Он также добавил, что не исключает «побочного ущерба» другим программам NASA, но не стал предсказывать конкретные решения. Пояснение: сейчас в NASA и администрации США решается вопрос о задержке или отмене инфракрасного телескопа WFIRST для того, чтобы перебросить деньги на JWST.
Я знаю, что сейчас мы начинаем проекты, по сравнению с которыми «Джеймс Уэбб» будет выглядеть небольшим. И эти миссии должны учитывать опыт JWST. Думаю, что в следующем десятилетии придется поломать голову над этой проблемой.
Также Янг рассказал о сложностях убеждения NASA в валидности рекомендаций. Много усилий пришлось потратить, чтобы доказать, что NASA может и должно контролировать подготовку к полету европейской ракеты Ariane 5, на которой должен быть запущен телескоп. Первоначально NASA утверждало, что это невозможно, но представители комиссии сумели в итоге убедить агентство.
Если бы эта программа не имела высокого научного потенциала и не касалась бы вопросов лидерства США, думаю, ее бы закрыли.

Выдающийся кошмар

Первоначально телескоп «Джеймс Уэбб» должен был стоить 500 миллионов долларов и отправиться в космос в 2007 году. Но первоначальные оценки стоимости увеличились в 19 раз, а сроки съехали на 14 лет.


Иллюстрация Grant Tremblay

Вполне ожидаемо, что сейчас выбросить уже потраченные миллиарды долларов жалко, поэтому «Джеймс Уэбб» будет запущен и, надеюсь, станет отличным телескопом. Но его собратья из больших стратегических космических миссий NASA демонстрируют куда большие успехи. Например, стартовавший в этом году Parker Solar Probe обошелся всего в полтора миллиарда. А миссии меньшего калибра с небольшими бюджетами выглядят на фоне «Джеймса Уэбба» просто прекрасно - недавно начавший работать на орбите и уже нашедший первые экзопланеты TESS обошелся в 200 миллионов, при этом сэкономил 40 и завершился на два месяца раньше запланированного. Простая математика говорит, что на стоимость JWST можно было бы запустить почти 50 аппаратов с бюджетом TESS, шесть аналогов Parker Solar Probe или 3 аналога марсохода «Кьюриосити». И, подозреваю, что научной пользы в этом случае было бы больше.

Отдельный печальный юмор заключается в том, что анализ переносов сроков дает дату пуска в 2026. Расчет, конечно, несерьезный, но в районе 2021 года стоит про него вспомнить.


Иллюстрация Corey S. Powell

Итоговые размышления

Печальная история «Джеймса Уэбба» наводит на несколько выводов:

Технологические скачки лучше делать на сравнительно дешевых тестовых аппаратах. У NASA был отличный опыт зонда Deep Space 1, на котором проверили двенадцать новых технологий, успешно применявшихся потом в последующих миссиях. Зонд обошелся, кстати, всего в двести с небольшим миллионов долларов по сегодняшним ценам. У Европейского космического агентства есть наглядный пример - успех LISA Pathfinder. Этот аппарат показывает возможность создать космический детектор гравитационных волн из нескольких спутников, а то, что их конструкция не будет сильно отличаться от уже работающего аппарата, повышает точность оценки сроков и стоимости проекта. Да, конечно, возможно возражение, что от «мини-JWST» не будет особого толка, но это вопрос проектирования аппарата и придумывания для него задач. Практика - критерий истины, и только успешная реализация технологии показывает ее настоящую готовность и стоимость.

Плавное и незаметное увеличение стоимости и сроков проекта может зайти очень далеко, и необходимо иметь четкие критерии того, когда ситуация переходит грань разумного. Этот совет, кстати, универсален, тем более, что в психике человека заложено иррациональное избегание потерь (вспомните эксперимент Макса Базермана с двадцатидолларовой купюрой на аукционе). Конкретно в случае «Джеймса Уэбба» в 2010-11 годах стоимость плавно выросла с 5 до 6,5, а затем до 8 миллиардов. И к тому моменту успели потратить примерно 3 миллиарда, которые, конечно же, стало очень жалко выбрасывать. А до 2011 года развилок с аудитом и шансом на закрытие проекта не просматривается. 2006 года дает оценку стоимости 3,3 миллиарда, меньше, чем у «Хаббла», и сейчас смотрится очень наглядной иллюстрацией.

С каждым дополнительным сантиметром апертуры, каждой дополнительной секундой времени наблюдения и каждым дополнительным атомом атмосферных помех, удаленным из поля обзора телескопа, лучше, глубже и понятнее можно будет увидеть Вселенную.

25 лет «Хабблу»

Когда телескоп «Хаббл» начал функционировать в 1990 году, он открыл новую эру в астрономии - космическую. Не нужно было больше бороться с атмосферой, беспокоиться об облаках или электромагнитных мерцаниях. Все, что требовалось, - это развернуть спутник на цель, стабилизировать его и собирать фотоны. За 25 лет космические телескопы начали охватывать весь электромагнитный спектр, что позволило впервые рассмотреть Вселенную на каждой длине волны света.

Но поскольку наше знание увеличилось, выросло и наше понимание неизвестного. Чем дальше мы заглядываем во Вселенную, тем более глубокое прошлое мы видим: конечное количество времени с момента Большого взрыва в сочетании с конечной скоростью света обеспечивает предел того, что мы можем наблюдать. Более того, расширение самого пространства работает против нас, растягивая звезд, пока он путешествует по Вселенной к нашим глазам. Даже космический телескоп «Хаббл», дающий нам самое глубокое, самое захватывающее изображение Вселенной, которое мы когда-либо открывали, в этом отношении ограничен.

Недостатки «Хаббла»

«Хаббл» - удивительный телескоп, но он имеет ряд принципиальных ограничений:

  • Всего 2,4 м в диаметре, что ограничивает его
  • Несмотря на покрытие светоотражающими материалами, он постоянно находится под прямыми солнечными лучами, которые его нагревают. Это значит, что из-за тепловых эффектов он не может наблюдать длину волны света более 1,6 мкм.
  • Сочетание ограниченной светосилы и длин волн, к которым он чувствителен, означает, что телескоп может видеть галактики возрастом не старше 500 млн лет.

Эти галактики прекрасны, далеки и существовали тогда, когда Вселенной было всего около 4% от ее нынешнего возраста. Но известно, что звезды и галактики существовали еще раньше.

Чтобы увидеть должен обладать более высокой чувствительностью. Это означает переход на более длинные волны и более низкие температуры, чем у «Хаббла». Именно поэтому и создается космический телескоп Джеймса Вебба.

Перспективы для науки

James Webb Space Telescope (JWST) предназначен для преодоления именно этих ограничений: с диаметром 6,5 м телескоп позволяет собирать в 7 раз больше света, чем "Хаббл". Он открывает возможность ультра-спектроскопии высокого разрешения от 600 нм до 6 мкм (в 4 раза больше длины волны, которую способен увидеть "Хаббл"), проводить наблюдения в средней инфракрасной области спектра с более высокой чувствительностью, чем когда-либо прежде. JWST использует пассивное охлаждение до температуры поверхности Плутона и способен активно охлаждать приборы средней инфракрасной области вплоть до 7 K. Телескоп Джеймса Вебба даст возможность заниматься наукой так, как никто раньше этого не делал.

Он позволит:

  • наблюдать самые ранние галактики, когда-либо сформировавшиеся;
  • видеть сквозь нейтральный газ и зондировать первые звезды и реионизацию Вселенной;
  • проводить спектроскопический анализ самых первых звезд (населения III), образовавшихся после Большого взрыва;
  • получить удивительные сюрпризы, подобные открытию самых ранних и квазаров во Вселенной.

Уровень научных исследований JWST не похож ни на что в прошлом, и поэтому телескоп был избран в качестве флагманской миссии НАСА 2010-х годов.

Научный шедевр

С технической точки зрения, новый телескоп Джеймса Вебба представляет собой настоящее произведение искусства. Проект прошел долгий путь: были перерасходы бюджета, отставания от графика и опасность отмены проекта. После вмешательства нового руководства все изменилось. Проект вдруг заработал как часы, были выделены средства, учтены ошибки, неудачи и проблемы, и команда JWST стала укладываться во все сроки, графики и бюджетные рамки. Запуск аппарата запланирован на октябрь 2018 года на ракете «Ариан-5». Команда не только следует расписанию, у нее есть девять месяцев в запасе, чтобы учесть все непредвиденные ситуации, чтобы все было собрано и готово к этой дате.

Телескоп Джеймса Вебба состоит из 4 основных частей.

Оптический блок

Включает все зеркала, из которых наиболее эффективны восемнадцать первичных сегментированных позолоченных зеркала. Они будут использоваться для сбора далекого звездного света и фокусирования его на инструментах для анализа. Все эти зеркала в настоящее время готовы и безупречны, сделаны точно по расписанию. По окончании сборки они будут сложены в компактную конструкцию, чтобы быть запущенными на расстояние более 1 млн км от Земли до точки Лагранжа L2, а затем автоматически развернуться с образованием сотовой структуры, которая долгие годы будет собирать сверхдальний свет. Это действительно красивая вещь и успешный результат титанических усилий многих специалистов.

Камера ближнего инфракрасного диапазона

«Вебб» оборудован четырьмя научными инструментами, которые уже готовы на 100%. Основной камерой телескопа является камера ближнего ИК-диапазона: от видимого оранжевого света до глубокой инфракрасной области. Она позволит получить беспрецедентные изображения самых ранних звезд, самых молодых галактик, находящихся еще в процессе формирования, молодых звезд Млечного Пути и близлежащих галактик, сотен новых объектов в поясе Койпера. Она оптимизирована для непосредственного получения изображений планет вокруг других звезд. Это будет основная камера, используемая большинством наблюдателей.

Ближний инфракрасный спектрограф

Данный инструмент не только разделяет свет на отдельные длины волн, но способен это делать для более 100 отдельных объектов одновременно! Этот прибор будет универсальным спектрографом «Вебба», который способен работать в 3-х различных режимах спектроскопии. Он был построен но многие компоненты, включая детекторы и батарея мульти-затвора, предоставлены Центром космических полетов им. Годдарда (НАСА). Этот прибор был протестирован и готов к установке.

Средне-инфракрасный инструмент

Прибор будет использоваться для широкополосной визуализации, то есть с его помощью будут получены наиболее впечатляющие изображения со всех инструментов «Вебба». С научной точки зрения, он будет наиболее полезным при измерении протопланетных дисков вокруг молодых звезд, измерении и визуализации с беспрецедентной точностью объектов пояса Койпера и пыли, разогретой светом звезд. Он будет единственным инструментом с криогенным охлаждением до 7 К. По сравнению с космическим телескопом Spitzer, это позволит улучшить результаты в 100 раз.

Бесщелевой спектрограф ближнего ИК-диапазона (NIRISS)

Прибор позволит производить:

  • широкоугольную спектроскопию в ближней инфракрасной области длин волн (1,0 - 2,5 мкм);
  • гризм-спектроскопию одного объекта в видимом и инфракрасном диапазоне (0,6 - 3,0 мкм);
  • апертурно-маскирующую интерферометрию на длинах волн 3,8 - 4,8 мкм (где ожидаются первые звезды и галактики);
  • широкодиапазонную съемку всего поля зрения.

Этот инструмент создан Канадским космическим агентством. После прохождения криогенного тестирования он также будет готов к интеграции в приборный отсек телескопа.

Солнцезащитное устройство

Космические телескопы ими еще не оборудовались. Одной из самых пугающих сторон каждого запуска является применение совершенно нового материала. Вместо того, чтобы охлаждать весь космический аппарат активно с помощью одноразового расходуемого хладагента, телескоп Джеймса Вебба использует совершенно новую технологию - 5-слойный солнцезащитный экран, который будет развернут для отражения солнечного излучения от телескопа. Пять 25-метровых листов будут соединены титановыми стержнями и установлены после развертывания телескопа. Защита тестировалась в 2008 и 2009 годах. Полномасштабные модели, участвовавшие в лабораторных испытаниях, выполнили все, что они должны были сделать, здесь на Земле. Это красивая инновация.

К тому же это еще и невероятная концепция: не просто блокировать свет от Солнца и поместить телескоп в тени, а сделать это таким образом, чтобы все тепло излучалось в направлении, противоположном ориентации телескопа. Каждый из пяти слоев в вакууме космоса будет становится холодным по мере удаления от наружного, который будет немного теплее, чем температура поверхности Земли - около 350-360 K. Температура последнего слоя должна опуститься до 37-40 К, что холоднее, чем ночью на поверхности Плутона.

Кроме того, предприняты значительные меры предосторожности для защиты от неблагоприятной среды глубокого космоса. Одной из вещей, о которых здесь следует беспокоиться, являются крошечные камешки, размером с гальку, песчинки, пылинки и еще меньше, пролетающие через межпланетное пространство со скоростью десятков или даже сотен тысяч км/ч. Эти микрометеориты способны проделывать крошечные, микроскопические отверстия во всем, с чем они сталкиваются: космических аппаратах, костюмах космонавтов, зеркалах телескопов и многом другом. Если зеркала получат только вмятины или отверстия, что слегка уменьшит количество доступного «хорошего света», то солнечный щит может порваться от края до края, что сделает весь слой бесполезным. Для борьбы с этим явлением была использована блестящая идея.

Весь солнечный щит был разделен на участки таким образом, что, если возникнет небольшой разрыв в одном, двух или даже трех из них, слой не порвется дальше, как трещина в лобовом стекле автомобиля. Секционирование сохранит всю структуру целой, что важно для предотвращения деградации.

Космический аппарат: системы сборки и управления

Это самый обычный компонент, так как есть у всех космических телескопов и научных миссий. У JWST он уникален, но также полностью готов. Все, что осталось сделать генеральному подрядчику проекта компании Northrop Grumman, - закончить щит, собрать телескоп и проверить его. Аппарат будет готов к запуску через 2 года.

10 лет открытий

Если все пойдет правильно, человечество окажется на пороге больших научных открытий. Завеса нейтрального газа, которая до сих пор заслоняла обзор самых ранних звезд и галактик, будет устранена инфракрасными возможностями «Вебба» и его огромной светосилой. Это будет самый большой, самый чувствительный телескоп с огромным диапазоном длин волн от 0,6 до 28 микрон (человеческий глаз видит от 0,4 до 0,7 мкм) из когда-либо построенных. Ожидается, что он обеспечит десятилетие наблюдений.

Согласно НАСА, срок миссии «Вебба» составит от 5,5 до 10 лет. Он ограничен количеством топлива, которое необходимо для поддержания орбиты, и сроком службы электроники и оборудования в суровых условиях космоса. Орбитальный телескоп Джеймса Вебба будет нести запас топлива на весь 10-летний срок, а через 6 месяцев после запуска будет произведено тестирование обеспечения полета, которое гарантирует 5 лет научных работ.

Что может пойти не так?

Основным ограничивающим фактором является количество топлива на борту. Когда оно закончится, спутник будет дрейфовать в сторону от L2, выйдя на хаотическую орбиту в непосредственной близости от Земли.

Коме этого, могут произойти и другие неприятности:

  • деградация зеркал, которая повлияет на количество собираемого света и создаст артефакты изображения, но не повредит дальнейшей эксплуатации телескопа;
  • выход из строя части или всего солнечного экрана, что приведет к повышению температуры космического аппарата и сузит используемый диапазон длин волн до очень близкой инфракрасной области (2-3 мкм);
  • поломка системы охлаждения инструмента среднего ИК-диапазона, что сделает его непригодным для использования, но не повлияет на другие инструменты (от 0,6 до 6 мкм).

Наиболее тяжелое испытание, которое ожидает телескоп Джеймса Вебба, - запуск и выведение на заданную орбиту. Именно эти ситуации тестировались и были успешно пройдены.

Революция в науке

Если телескоп Вебба заработает в штатном режиме, топлива хватит, чтобы обеспечить его работу с 2018 по 2028 год. Кроме того, существует потенциальная возможность дозаправки, которая могла бы увеличить срок службы телескопа еще на одно десятилетие. Подобно тому, как «Хаббл» эксплуатировался в течение 25 лет, JWST мог бы обеспечить поколение революционной науки. В октябре 2018 года ракета-носитель «Ариан-5» выведет на орбиту будущее астрономии, которое после более 10 лет напряженной работы уже готово начать приносить плоды. Будущее космических телескопов почти наступило.

Космический телескоп им. Джеймса Уэбба, запуск которого должен состояться в 2020 году, будет исследовать космос, чтобы раскрыть историю вселенной от Большого Взрыва до момента формирования планет. Перед ним стоит четыре исследовательских задачи: изучение первого света во вселенной, исследование появления галактик в ранней вселенной, наблюдение за рождением звезд и протопланетных систем, а также поиск экзопланет (включая поиск внеземной жизни).

Космический телескоп им. Джеймса Уэбба (JWST) будет запущен с помощью ракета-носителя Ариан-5 из Французской Гвианы, после чего потребуется 30 дней, чтобы пролететь более миллиона километров в место его постоянной дислокации: в точку Лагранжа (L2), или гравитационно стабильное положение в пространстве, где он и будет вращаться. Это достаточно популярное место, в котором располагаются несколько других космических телескопов, в том числе телескоп Гершеля и космическая обсерватория Планка.

Ожидается, что мощный космический телескоп стоимостью 8,8 млрд. долларов сможет получить удивительные фотографии небесных объектов, как и его предшественник, космический телескоп Хаббл. К счастью для астрономов, «Хаббл» остается в хорошем состоянии, и вполне вероятно, что два телескопа будут работать вместе первые несколько лет. JWST также исследует экзопланеты, которые были обнаружены космическим телескопом Кеплер или при помощи наблюдений в реальном времени с наземных телескопов.

Задачи, стоящие перед телескопом

Научная программа для JWST в основном разделена на четыре области:

  • Первый свет и реионизация : это относится к ранним этапам развития вселенной после того, как Большой взрыв создал ее такой, какой мы ее знаем. На первых этапах после Большого взрыва вселенная была морем частиц (таких как электроны, протоны и нейтроны), и в ней не существовало света до того, пока вселенная не остыла настолько, чтобы эти частицы начали объединяться. Еще одна вещь, которую JWST будет изучать - это то, что произошло после образования первых звезд; этот отрезок истории называется «эпохой реионизации», потому что он относится к тому времени, когда нейтральный водород был повторно ионизирован (снова заряжен электрическим зарядом) излучением от этих первых звезд.
  • Образование галактик : взгляд на галактики - полезный способ увидеть, как материя организована в гигантских масштабах, что, в свою очередь, дает нам подсказки о том, как эволюционировала вселенная. Спиральные и эллиптические галактики, которые мы видим сегодня, на самом деле эволюционировали из разных форм в течение миллиардов лет, и одна из целей JWST состоит в том, чтобы взглянуть на самые ранние галактики, чтобы лучше понять эту эволюцию. Ученые также пытаются выяснить, как мы получили то разнообразие галактик, которое наблюдаем сегодня, и какие существуют способы образования галактик.
  • Рождение звезд и протопланетных систем : «Столпы творения», или туманность Орла - одно из самых известных мест рождения звезд. Звезды появляются в облаках газа, и по мере того, как они растут, радиационное давление, которое они оказывают, сдувает с них часть газа (который может снова использоваться для образования других звезд, если он не слишком широко рассеялся). Однако трудно что-либо видеть внутри газа. Инфракрасные «глаза» JWST смогут увидеть источники тепла, включая звезды, рождающиеся в этих облаках.
  • Планеты и происхождение жизни : в последнее десятилетие было найдено огромное количество экзопланет, обнаруженных в том числе и с помощью космического телескопа Кеплер. Мощные датчики JWST смогут исследовать эти планеты более подробно, включая (в некоторых случаях) визуализацию их атмосферы. Понимание атмосферы и условий образования планет могут помочь ученым лучше предсказывать, пригодны ли те или иные планеты для жизни, или нет.
Инструменты на борту


JWST будет оснащен четырьмя научными инструментами:

  • Камера ближнего инфракрасного излучения (NIRCam) : эта инфракрасная камера, предоставленная Университетом Аризоны, обнаружит свет от звезд в соседних галактиках и от удаленных звезд Млечного Пути. Она также будет искать свет от звезд и галактик, которые сформировались в начале жизни вселенной. NIRCam будет оснащаться коронографами, которые могут блокировать свет яркого объекта (например, звезды), что сделает тусклые объекты вблизи этих звезд (например, планет) видимыми.
  • Спектрограф ближнего инфракрасного диапазона (NIRSpec) : NIRSpec будет наблюдать до 100 объектов одновременно, ища первые галактики, образовавшиеся после Большого Взрыва. NIRSpec был предоставлен Европейским космическим агентством при содействии Центра космических полетов имени Годдара.
  • Спектрограф среднего инфракрасного диапазона (MIRI) : MIRI создаст удивительные космические фотографии дальних небесных объектов, как это сейчас делает Хаббл. Спектрограф позволит ученым собрать больше физических подробностей о дальних объектах во вселенной. MIRI обнаружит отдаленные галактики, слабые кометы, образующиеся звезды и объекты в поясе Койпера. MIRI был спроектирован Европейским консорциумом совместно с Европейским космическим агентством и Лабораторией реактивного движения НАСА.
  • Датчик точного наведения с устройством формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф (FGS/NIRISS) : этот инструмент, созданный в Канадском космическом агентстве, больше похож на два прибора в одном. Компонент FGS отвечает за то, чтобы JWST смотрел точно в правильном направлении во время своих научных исследований. NIRISS будет искать следы первого света во вселенной, а также исследовать экзопланеты.
Телескоп к тому же будет иметь солнцезащитный козырек и зеркало диаметром 21,3 фута (6,5 метров) - это самое большое зеркало, которое будет отправлено в космос. Эти компоненты не поместятся разложенном виде в ракету, запускающую JWST, поэтому они оба будут разворачиваться, как только телескоп окажется в космосе.

История JWST

JWST имеет долгую историю развития. Еще в 2011 году затраты на него превысили предполагаемые в четыре раза, что повлияло на бюджет НАСА для астрономических исследований и, в свою очередь, заставило агентство выйти из некоторых совместных миссий с ЕКА (Европейским космическим агентством).

Когда Хаббл только готовили к космической миссии, уже планировался телескоп-преемник. После запуска Хаббла НАСА приступила к «более быстрой, лучшей и дешевой» эре, которая предполагает использовать миниатюризацию электроники и команды тигров (tiger teams - команды экспертов по определению слабых мест системы - прим. перев. ) для сокращения расходов на космические миссии.

Это вызвало переформулировку ранних характеристик нового телескопа во что-то, что назвали Космическим телескопом следующего поколения (NGST). Первая версия NGST предполагала 8-метровое зеркало, а место дислокации телескопа - точка Лагранжа L2. NGST был переименован в Космический телескоп Джеймса Вебба в 2002 году в честь второго руководителя НАСА. По оценкам, стоимость проекта в 2005 году не должна была превышать 4,5 млрд. долларов, но в последующие годы все же произошел перерасход средств.

В 2010 году независимая экспертная группа, ответственная на JWST, предупредила, что стоимость телескопа будет существенно превышать запланированную. Они также отметили, что после подтверждения проекта НАСА в 2008 году рост затрат и задержки с расписанием были «связаны с бюджетированием и управленческими программами, а не с техническими характеристиками». Среди проблем, упомянутых в обзоре, были плохие процедуры оценки и базовый бюджет, который был слишком низким. Группа предположила, чтобы самая ранняя дата запуска - это 2015 год.

Около 2010 года НАСА и Европейское космическое агентство сотрудничали в нескольких крупномасштабных миссиях, включая ExoMars и создание рентгеновского телескопа Athena. Однако к 2011 году ЕКА заявила, что быстрее будет продвигаться вперед в этих миссиях самостоятельно. НАСА сократило также свои другие программы, чтобы обеспечить материально разработку JWST, в том числе вышла из программы ExoMars. Кроме того, опрос Национального научного фонда США в 2010 году, который проводится каждые десять лет и устанавливает приоритетные астрономические программы, оценил совместные миссии с ЕКА ниже, чем другие инициативы.

К 2011 году JWST стоил уже 8,7 млрд. долларов, из-за чего проект был на грани закрытия из-за перерасхода средств. И хотя финансирование миссии было продолжено, в НАСА признали, что вынуждены были серьезно ограничить другие миссии. Повышенная бдительность по программе продолжалась в течение нескольких лет, и в 2015 году НАСА заявила, что работа над телескопом идет полным ходом, а запуск ожидается в 2018 году.

Однако в сентябре NASA объявило, что запуск был перенесен с октября 2018 года на весну 2019 года, ссылаясь на вопросы интеграции космических аппаратов. «Изменение сроков запуска не указывает на проблемы с оборудованием или техническими характеристиками», - говорится в заявлении Томаса Зурбухена, ассоциированного администратора Управления научными миссиями НАСА. «Скорее, интеграция различных элементов космического аппарата занимает больше времени, чем ожидалось».

В марте 2018 года НАСА объявило, что дата запуска снова переносится, теперь уже на май 2020 года, из-за необходимости более тщательного тестирования сложных систем телескопа. Задержка запуска не является единственной неутешительной новостью для космического телескопа. Его стоимость, которая уже превышает 8,8 млрд. долларов, может еще увеличиться, как сообщили 27 марта официальные лица НАСА.

«Теперь все технические нюансы решены, но все еще остаются некоторые моменты, выявленные при тестировании узлов телескопа, и они побуждают нас предпринять необходимые шаги, чтобы решить их и завершить эту амбициозную и сложную обсерватории», - сказал исполняющий обязанности администратора НАСА Роберт Лайтфут в своем заявлении.

Джеймс Уэбб

JWST назван в честь второго руководителя НАСА Джеймса Уэбба. Он взял на себя ответственность за космическое агентство с 1961 по 1968 год, и ушел на пенсию всего за несколько месяцев до того, как НАСА совершило первую высадку человека на Луну.

Хотя пребывания Уэбба в качестве администратора НАСА наиболее тесно связано с программой Аполлон, он также считается лидером в области космической науки. Даже во времена великих политических потрясений, Уэбб ставил основной целью НАСА продвижение науки, считая, что запуск большого космического телескопа должен быть одной из ключевых целей космического агентства. NASA запустило более 75 миссий, направленных на изучение космоса, под руководством Уэбба, в том числе миссии по изучению Солнца, звезд и галактик, а также космического пространства сразу за земной атмосферой.

Идея строительства нового мощного космического телескопа возникла почти 20 лет назад, в 1996 году когда американские астрономы выпустили доклад HST and Beyond, в котором обсуждался вопрос - куда же должна двигаться астрономия дальше. Незадолго до этого, в 1995 году была открыта первая экзопланета рядом со звездой, похожей на наше Солнце. Это взбудоражило научное сообщество - ведь появился шанс, что где-то может существовать мир, напоминающий Землю - поэтому исследователи попросили NASA построить телескоп, который будет пригоден в том числе для поиска и изучения экзопланет. Именно здесь берет начало история «Джеймса Уэбба». Запуск этого телескопа постоянно откладывался (первоначально планировалось отправить его в космос еще в 2011 году), но теперь он, кажется, выходит на финишную прямую. Редакция N+1 попыталась разобраться, что астрономы рассчитывают узнать с помощью «Уэбба», и поговорила с теми, кто создает этот инструмент.

Название «Джеймс Уэбб» телескопу было присвоено в 2002 году, до этого он назывался Next Generation Space Telescope («Космический телескоп нового поколения») или сокращенно NGST, поскольку новый инструмент должен продолжить исследования, начатые «Хабблом». Если « » исследует Вселенную преимущественно в оптическом диапазоне, захватывая лишь ближний инфракрасный и ультрафиолетовый диапазон, которые граничат с видимым излучением, то «Джеймс Уэбб» сконцентрируется на инфракрасной части спектра, где видно более древние и более холодные объекты. Кроме того, выражение «новое поколение» указывает на продвинутые технологии и инженерные решения, которые будут использоваться в телескопе.


Процесс изготовления зеркала телескопа


Фрагмент зеркала телескопа


Процесс изготовления зеркала телескопа


Фрагмент зеркала телескопа


Фрагмент зеркала телескопа


Фрагмент зеркала телескопа

Пожалуй, самое нестандартное и сложное из них - это главное зеркало «Джеймса Уэбба» диаметром 6,5 метра. Ученые не стали создавать увеличенную версию зеркала «Хаббла», потому что оно весило бы слишком много, и придумали изящный выход из ситуации: они решили собрать зеркало из 18 отдельных сегментов. Для них использовался легкий и прочный металл бериллий, на который был нанесен тонкий слой золота. В итоге зеркало весит 705 килограммов, в то время как его площадь составляет 25 квадратных метров. Зеркало «Хаббла» весит 828 килограммов при площади 4,5 квадратных метра.

Другой важный компонент телескопа, который в последнее время доставляет немало хлопот инженерам - развертываемый теплозащитный экран, необходимый для защиты приборов «Джеймса Уэбба» от перегрева. На околоземной орбите под прямыми лучами Солнца предметы могут разогреваться до 121 градуса Цельсия. Приборы «Джеймса Уэбба» предназначены для работы в условиях достаточно низких температур, поэтому и понадобился теплозащитный экран, закрывающий их от Солнца.

По размеру он сравним с теннисным кортом, 21 x 14 метров, поэтому отправить его в точку Лагранжа L2 (именно там будет работать телескоп) в развернутом виде невозможно. Здесь и начинаются основные трудности - как доставить щит к пункту назначения так, чтобы он не повредился? Самым логичным решением оказалось сложить его на время полета, а потом развернуть, когда «Джеймс Уэбб» будет в рабочей точке.


Внешняя сторона щита, где находится антенна, бортовой компьютер, гироскопы и солнечная панель, разогреется, как ожидают ученые, до 85 градусов Цельсия. Зато на «ночной» стороне, где находятся основные научные приборы, будет морозно: около 233 градусов ниже нуля. Обеспечивать теплоизоляцию будут пять слоев щита - каждый холоднее предыдущего.



Разворачиваемый щит «Джеймса Уэбба»

Какие же научные приборы требуется так тщательно укрывать от Солнца? Всего их четыре: камера ближнего инфракрасного диапазона NIRCam, прибор для работы в среднем ИК-диапазоне MIRI, спектрограф ближнего ИК-диапазона NIRSpec и система FGS/NIRISS. На картинке ниже можно наглядно увидеть, в каком «свете» они будут видеть Вселенную:


Изображение показывает диапазон, который захватят инструменты телескопа

С помощью научных приборов ученые надеются ответить на многие фундаментальные вопросы. В первую очередь, они касаются экзопланет.

Несмотря на то, что на сегодняшний день телескоп «Кеплер» открыл более 2,5 тысячи экзопланет, оценки плотности существуют лишь для нескольких сотен. Меж тем, эти оценки позволяют нам понять, к какому типу принадлежит планета. Если у нее низкая плотность - очевидно, перед нами газовый гигант. Если же небесное тело имеет высокую плотность, то, скорее всего, это каменистая планета, напоминающая Землю или Марс. Астрономы надеются, что «Джеймс Уэбб» поможет собрать больше данных о массах и диаметрах планет, что поможет вычислить их плотность и определить их тип.


NASA/Goddard Space Flight Center and the Advanced Visualization Laboratory at the National Center for Supercomputing Applications

Другой важный вопрос касается атмосфер экзопланет. «Хаббл» и «Спитцер» собрали данные о газовых оболочках примерно ста планет. Инструменты «Джеймса Уэбба» позволят увеличить это число, как минимум, в три раза. Благодаря научным приборам и разным режимам наблюдений, астрономы смогут определить присутствие огромного числа веществ, в том числе воды, метана и углекислого газа - причем не только на крупных планетах, но и на планетах земного типа. Одной из наблюдательных целей станет , где находится сразу семь землеподобных планет.

Больше всего результатов ожидается для молодых, только сформировавшихся юпитеров, которые все еще излучают в инфракрасном диапазоне. В частности, в Солнечной системе по мере уменьшения массы газовых гигантов, содержание в них металлов (элементов тяжелее водорода и гелия) возрастает. «Хаббл» в свое время показал, что не все планетные системы подчиняются этому закону, однако статистически достоверной выборки пока что нет - ее получит «Джеймс Уэбб». Кроме того, ожидается, что телескоп также изучит субнептуны и суперземли.

Другой важной целью телескопа станут древние галактики. Сегодня мы уже достаточно много знаем об окрестных галактиках, но все еще очень мало о тех, что появились в очень молодой Вселенной. «Хаббл» может видеть Вселенную такой, какой она была спустя 400 миллионов лет после Большого взрыва, а обсерватория «Планк» наблюдала космическое микроволновое излучение, которое возникло спустя 400 тысяч лет после Большого взрыва. «Джеймсу Уэббу» предстоит заполнить пробел между ними и выяснить, как выглядели галактики в первые 3 процента космической истории.

Сейчас астрономы наблюдают прямую зависимость между размером галактики и ее возрастом - чем старше Вселенная, тем больше в ней маленьких галактик. Однако этот тренд вряд ли сохранится, и ученые надеются определить некоторую «поворотную точку», найти нижний предел размера галактик. Таким образом, астрономы хотят ответить на вопрос, когда возникли первые галактики.

Отдельным пунктом стоит изучение молекулярных облаков и протопланетных дисков. В прошлом «Спитцер» мог заглянуть лишь в ближайшие окрестности Солнечной системы. «Уэбб» намного более чувствителен и фактически сможет увидеть другой край Млечного пути, равно как и его центр.

Также «Джеймс Уэбб» будет искать гипотетические звезды населения III - это очень тяжелые объекты, в которых почти нет элементов тяжелее гелия, водорода и лития. Предполагается, что звезды этого типа должны составлять после Большого взрыва.



Пара взаимодействующих галактик, получившая название «Антенны»

Сегодня запуск «Джеймса Уэбба» намечен на июнь 2019 года. Изначально предполагалось, что телескоп отправят в космос ранней весной, однако миссия была отложена на несколько месяцев из-за технических проблем. Кристин Пуллиам (Christine Pulliam), заместитель научного руководителя проекта, ответила на вопросы N+1 о самом телескопе и сложностях при его строительстве.

Наверное, я задам очевидный вопрос, но что делает «Джеймс Уэбб» уникальным?

«Уэбб» позволит нам увидеть Вселенную такой, какой мы никогда не видели ее раньше. Он будет вести наблюдения в инфракрасном диапазоне, то есть на других длинах волн, нежели «Хаббл», сможет заглянуть дальше, чем «Спитцер», и в другие области, нежели «Гершель». Он заполнит пробелы и поможет создать целостную картину Вселенной. Обширные наблюдения в ИК-диапазоне помогут нам увидеть зарождающиеся звезды и планеты. Нам наконец-то откроются первые галактики, и это поможет сложить воедино всю космологическую историю. Некоторые любят говорить, что телескопы - это машины времени, и это очень хорошее выражение. Когда мы смотрим в космос, мы видим прошлое, потому что свету требуется время, чтобы достигнуть Земли. Мы увидим Вселенную, когда она была крайне молодой - и это поможет понять, как появились мы, и как работает Вселенная. Если говорить о чем-то более близком человечеству, то мы увидим, как возникали звезды, как формировались экзопланеты, и мы сможем даже охарактеризовать их атмосферы.

Да, вопрос об атмосферах далеких планет волнует очень многих. Какие результаты вы ожидаете получить?

У нас были миссии вроде «Кеплера», которые занимались поиском кандидатов. Благодаря им, сегодня нам известны тысячи экзопланет. Теперь же «Джеймс Уэбб» будет смотреть на уже известные объекты и исследовать их атмосферы. В частности это касается планет-гигантов - небесных тел по размеру находящихся между нептунами и супер-юпитерами. Нам крайне важно понять, как такие объекты формируются, как они эволюционируют и на что похожи системы, в состав которых они входят. Например, если мы видим систему из нескольких планет, нам важно определить, может ли там быть вода и где ее искать.

Фактически определить зону обитаемости?

Именно. Для разных звезд она будет разной. «Джеймс Уэбб» поможет нам охарактеризовать далекие планеты и понять, насколько уникален наш дом.

Ожидается, что миссия телескопа продлится около десяти лет. Однако каковы реальные прогнозы? Все мы помним «Вояджеры», которые до сих пор находятся в рабочем состоянии и отправляют данные на Землю, хотя этого никто не планировал.

Номинальный срок службы инструмента - пять лет, и мы надеемся, что сможет столько проработать. Если давать более смелые оценки, то это десять лет. Мы ограничены запасом охладителя, который должен поддерживать системы телескопа в рабочем состоянии. Я не думаю, что «Джеймс Уэбб» сможет, как и «Хаббл», протянуть 29 лет.

Да, «Джеймс Уэбб» будет слишком далеко от Земли, во второй точке Лагранжа. Как вы думаете, позволят ли нам технологии в будущем долететь до телескопа и починить его в случае поломки?

Такая возможность не исключается. На этот случай на телескопе есть крепление для роботизированного манипулятора, который может быть установлен на «Уэббе». Тем не менее, с самого начала обслуживание телескопа не предусматривалось, поэтому на это не стоит возлагать слишком много надежд. С учетом того, что инструмент будет работать всего 5-10 лет, мы вряд ли успеем шагнуть так далеко вперед, чтобы отправить к нему космический корабль.

Сможет ли «Джеймс Уэбб» работать в паре с другими космическими аппаратами? Например, Космический и астрономический центр Университета Колорадо предлагают создать внешний коронограф для него. В 2013 году они говорили о возможной совместной работе с телескопом - есть ли такие планы в действительности?

Я бы не сказала, что в данный момент мы рассматриваем такую возможность. Если я не ошибаюсь, то за этот проект отвечает Уэбб Кэш, но есть и другой проект звездного щита, а также несколько других групп, которые занимаются созданием похожих инструментов. Никаких конкретных планов относительно того, чтобы связать «Джеймс Уэбб» с другим инструментом, сегодня нет, хотя гипотетически он может работать совместно с любой космической обсерваторией.

А как планируется распределять время наблюдений?

Сейчас астрономы со всего мира присылают нам свои заявки, и после того, как они пройдут рецензирование, мы получим приблизительный план. Существует «гарантированное время для наблюдений», которое закреплено за учеными, помогающими в проектировании и создании «Джеймса Уэбба» сегодня, что-то вроде благодарности за их работу. Эти исследователи будут изучать галактики, экзопланеты, например планеты системы TRAPPIST. Отчасти мы сами выбираем цели, чтобы проверить возможности «Джеймса Уэба». При создании телескопа мы только начинали задумываться об экзопланетах, но теперь - это очень перспективная область в астрономии, и мы должны понять, как использовать «Джеймс Уэбб» для изучения планет за пределами Солнечной системы. Как раз этим и займутся команды, которые будут проводить наблюдения в первый год. Осенью уже станет известно, что мы «увидим» в первый год.


Hubble Ultra Deep Field

Почему сроки запуска вновь сдвигают? Ходят слухи о финансовых проблемах и о проблемах с системой зеркал.

Дело в том, что «Уэбб» - очень непростой телескоп, и мы впервые решаем столь сложную задачу. В аппарате есть несколько главных компонентов: зеркала, инструменты, огромный щит и охлаждающие механизмы. Все эти элементы надо построить и протестировать, совместить, протестировать снова - само собой, это требует времени. Также надо убедиться, что мы все сделали правильно, что все детали подходят друг к другу, что запуск будет удачным, а все элементы развернутся правильно. Задержки происходят из-за большого количества этапов и необходимости тщательной проверки.

То есть сейчас вы проводили тесты, и поняли, что не укладываетесь в изначальное расписание?

Да. На самом деле, у нас есть еще много резервного времени. Мы изначально знали, что все будет в порядке, но допускали, что подготовка может по некоторым причинам затянуться. Кроме того, когда мы будем готовы запускать аппарат, нам также потребуется договориться о конкретной дате с ESA, которому принадлежит ракета «Ариан». Поэтому мы подумали - куда торопиться?

Расскажите, какие тесты должен пройти и проходит телескоп?

Совсем недавно завершилась проверка системы OTISS (Optical Telescope and Instrument Assembly) в космическом центре имени Линдона Джонсона. Ее охладили до крайне низких рабочих температур, протестировали всю оптику и сам телескоп. Недавно ученые вынули систему из охлаждающей камеры, нагрели ее снова и теперь OTISS отправится в Калифорнию, в Космический парк на пляже Редандо, где ее соединят с солнцезащитным щитом. Кроме того, сейчас ведется работа и над самим щитом, специалисты проводят многочисленные проверки. Когда все элементы будут прикреплены к щиту, его будут складывать и раскладывать, чтобы убедиться, что он работает без нареканий, а затем будут проведены и другие тесты, включая тест на вибрацию, с которой телескоп столкнется во время полета на ракете. Запуск в космос - серьезное испытание для аппарата, поэтому инженеры хотят быть уверены, что все его компоненты переживут полет. Затем исследователи подготовят «Джеймс Уэбб» к запуску, погрузят на баржу, и отправят его на космодром во Французской Гвиане где-то в начале 2019 года.

А что насчет остальных инструментов? Насколько мне известно, вы упомянули не все. Они уже прошли предварительные проверки?

Да, они уже прошли все тесты и сейчас уже установлены на телескоп. Это отдельные приборы, которые будут проводить многочисленные научные исследования - спектрограф, изучающий небо в среднем ИК-диапазоне, камера. Кроме того, у всех инструментов разные режимы, поэтому надо проверить, действительно ли они работают так, как мы задумали. Это очень важно - необходимо «тряхнуть» прибор и убедиться, что угол зрения остался тем же.

Когда нам следует ждать первых результатов?

Скорее всего, первые данные придут только в конце будущего года или в начале 2020 года. Между запуском и получением первой информации пройдет где-то полгода. В течение этого времени телескоп будет разворачиваться, и мы убедимся, что он раскрылся и работает нормально. Затем приборам нужно будет охладиться, это займет достаточно много времени. На Земле «Джеймс Уэбб» находится при комнатной температуре, но когда мы запустим его в космос, необходимо будет дождаться, когда его инструменты достигнут рабочих температур. Затем мы введем их в эксплуатацию: сейчас уже запланирован ряд «тренировочных упражнений» - несколько плановых наблюдений и проверок разных режимов работы, которые позволят убедиться, что все функционирует, как и должно. Так как у нас нет пусковой даты, и, как следствие, нам неизвестно, что попадет в поле зрения телескопа, конкретный объект для наблюдений не выбран. Скорее всего, мы будем калибровать приборы телескопа на какой-нибудь далекой звезде. Все это внутренние процессы - сначала предстоит убедиться, что мы вообще можем что-либо увидеть.

Однако после того, как мы удостоверимся, что все инструменты работают, мы приступим непосредственно к научным экспериментам. Команда ученых, которая специализируется на снимках, определит, какие цели будут выглядеть по-настоящему завораживающими и зацепят публику. Работа будет выполнена теми же художниками, которые работали со снимками «Хаббла» - это люди с многолетним опытом обработки астрономических изображений. Кроме того, будут проводиться дополнительные тесты оборудования.

После того, как выйдут первые изображения, у нас будет год с небольшим для научных наблюдений. Они включают уже известные программы по изучению очень далеких галактик, квазаров, экзопланет и Юпитера. В целом, астрономы будут наблюдать все, что только возможно - начиная с областей активного звездообразования и заканчивая льдом в протопланетных дисках. Эти исследования важны для всех нас: все остальное научное сообщество сможет увидеть результаты других команд и понять, куда им следует двигаться дальше.

Кристина Уласович
Похожие публикации