Именные реакции. Механизм реакции вюрца Какой металл используется в реакции вюрца

2.1. Реакция Бутлерова А.М.

Получение сахаров из формальдегида под действием щелочей:

В результате реакции получается смесь сахаров.

2.2. Реакция Вагнера Е.Е.

Окисление алкенов в цис - α - гликоли действием разбавленного раствора перманганата калия в щелочной среде (гидроксилирование):

2.3. Реакция Вюрца

Получение углеводородов конденсацией алкилгалогенидов при действии металлического натрия:

2.4. Реакция Вюрца - Гриньяра

Образование углеводородов при взаимодействии алкил (арил) галогенидов с реактивом Гриньяра:

2.5. Реакция Вюрца - Фиттига

Получение жирноароматических углеводородов конденсацией ароматических галогенопроизводных с алкилгалогенидами в присутствии натрия:

2.6. Реакция Гарриеса

Окислительное расщепление алкенов путем озонирования и последующего гидролиза (озонолиз):

2.7. Реакция Гаттермана - Коха

Реакция формилирования ароматических углеводородов действием окиси углерода и хлористого водорода в присутствии AlCl 3:

2.8. Реакция Гелля - Фольгарда - Зелинского

Получение α - галогензамещенных кислот действием хлора или брома в присутствии фосфора:

2.9. Реакция Гофмана

Получение алифатических аминов алкилированием аммиака алкилгалогенидами:

2.10. Реакция Гофмана (перегруппировка)

Перегруппировка амидов кислот в первичные амины с потерей одного атома углерода в растворе гипохлоритов:

2.11. Реакции Гриньяра (магнийорганический синтез)

Реакции синтеза органических соединений на основе присоединения реактива Гриньяра к связи >С = О:

2.12. Реакция Дильса - Альдера (диеновый синтез)

Присоединение соединений с активированной двойной связью (диенофилов) к сопряженным диенам с образованием циклических структур. Присоединение идет по типу 1,4:

2.13. Реакция Зандмейера

Замена диазогруппы в ароматических соединениях на галоген или другую группу действием солей одновалентной меди:

2.14. Реакция Зелинского

Получение α - аминокислот из альдегидов или кетонов при действии смеси цианида калия и хлорида аммония (цианида аммония):

2.15. Реакция Зинина

Восстановление ароматических нитросоединений в амины:

Зинин использовал для восстановления сульфид аммония, в промышленности для восстановления нитросоединений применяют чугунные стружки в кислой среде.

2.16. Реакция Иоцича

Получение алкинилмагнийгалогенидов (реактивов Иоцича) с помощью реактива Гриньяра:

2.17. Реакция Канниццаро

Окислительно-восстановительное диспропорционирование двух молекул ароматического альдегида в соответствующие спирт и кислоту под действием щелочей. В эту реакцию вступают также алифатические и гетероциклические альдегиды, не содержащие в α - положении подвижного водорода:

Перекрестная реакция Канниццаро

2.18. Реакция (конденсация) Кляйзена

Получение эфиров коричных кислот конденсацией ароматических альдегидов с эфирами карбоновых кислот, карбонильными соединениями.

2.19. Реакция Кольбе

Получение углеводородов электролизом растворов щелочных солей алифатических карбоновых кислот:

На аноде анион кислоты разряжается в неустойчивый радикал кислоты, который распадается свыделением диоксида углерода, и образующиеся алкильные радикалы спариваются в углеводород:

2. 20. Реакция Кольбе-Шмитта

Получение ароматических оксикислот термическим карбоксилированием фенолятов щелочных металлов двуокисью углерода:

2. 21. Реакция Коновалова

Нитрование алифатических, алициклических и жирноароматических соединений азотной кислотой (12-20%):

2.22. Реакция Кучерова

Каталитическая гидратация ацетилена, его гомологов и производных с образованием альдегидов и кетонов:

а) при гидратации ацетилена получается ацетальдегид:

б) при гидратации гомологов ацетилена получаются кетоны:

2.23. Реакция Лебедева

Получение бутадиена каталитическим пиролизом (450˚C) этилового спирта:

2.24. Реакция Перкина

Получение α,β - ненасыщенных кислот конденсацией ароматических альдегидов с ангидридами карбоновых кислот:

2.25. Реакция Рашига

Промышленное получение фенола каталитическим хлорированием бензола с последующим гидролизом хлорбензола водяным паром:

2.26. Реакция Реформатского

Получение β - оксикарбоновых кислот взаимодействием альдегидов или кетонов с эфирами α - галогенкарбоновых кислот под действием металлического цинка:

2.27. Реакция Родионова

Получение β - аминокислот конденсацией альдегидов с малоновой кислотой и аммиаком в спиртовом растворе:

2,28. Реакция Тищенко

Конденсация альдегидов с образованием сложных эфиров под действием алкоголятов алюминия:

2.29. Реакция Фаворского

Взаимодействие алкинов с альдегидами и кетонами:

2.30. Реакция Фриделя-Крафтса

Алкилирование или ацилирование ароматических соединений алкил- или ацилгалогенидами в присутствии хлористого алюминия:

а) алкилирование:

б) ацилирование:

2.31. Реакция Чичибабина

Реакция взаимодействия пиридина с амидом натрия (α-аминирование):

2.32. Реакция Чугаева-Церевитинова

Взаимодействие органических соединений, содержащих подвижный атом водорода, с реактивом Гриньяра с выделением метана:

2.33. Реакция Шиффа

Взаимодействие альдегидов с аминами в присутствии щелочи приводит к образованию азометинов (оснований Шиффа):

2.34. Реакция Штреккера

Получение α - аминокислот из альдегидов и кетонов действием аммиака и синильной кислоты с последующим гидролизом образовавшихся аминонитрилов:

2.35. Реакция Юрьева

РЕАКЦИЯ ВЮРЦА химическая реакция, позволяющая получать простейшие органические соединения – предельные углеводороды. Сама реакция Вюрца заключается в конденсации алкилгалогенидов под действием металлического Na, Li или реже K: 2RHal + 2Na = R–R + 2NaHal.
Иногда ее трактуют как взаимодействие RNa или RLi с R"Hal.
Реакция была открыта французским химиком-органиком Шарлем Вюрцем (Wurtz Charles (1817–1884) в 1855 при попытке получения этилнатрия из хлористого этила и металлического натрия. Несмотря на то, что реакция Вюрца приводит к образованию новой углерод-углеродной связи, она нечасто применяется в органическом синтезе. В основном с ее помощью получают предельные углеводороды с длинной углеродной цепью, особенно она полезна при получении индивидуальных углеводородов большой молекулярной массы, и, как видно из приведенной схемы, для получения заданного углеводорода следует брать только один алкилгалогенид, так как при конденсации двух алкилгалогенидов получается смесь всех трех возможных продуктов сочетания.
Поэтому если используется алкилгалогенид и натрий, реакцией Вюрца можно получить только углеводороды с четным количеством атомов углерода. Наиболее успешно реакция Вюрца протекает с первичными алкилйодидами. Очень низкие выходы целевого продукта получают при использовании метода Вюрца для вторичных алкилгалогенидов. Реакцию обычно проводят в диэтиловом эфире. Использование углеводородов в качестве растворителей уменьшает селективность реакции.
Однако если использовать заранее приготовленное металлоорганическое соединение, например алкиллитий, то можно получить и несимметричные продукты конденсации:
RLi + R"Hal = R – R" + LiHal
В обоих случаях реакция сопровождается образованием большого количества побочных продуктов за счет побочных процессов. Это иллюстрирует пример взаимодействия этиллития с 2-бромоктаном:
.
В этом случае 3-метилнонан и ряд побочных продуктов в указанных молярных соотношениях образуются как продукт реакции Вюрца.
Кроме натрия, в реакции Вюрца использовались такие металлы, как серебро, цинк, железо, медь и индий.
Реакция Вюрца успешно применяется для внутримолекулярных конденсаций для построения карбоциклических систем. Так из 1,3-дибромпропана под действием металлического цинка и йодида натрия (в качестве промотора реакции) может быть получен циклопропан:

Можно построить и другие напряженные карбоциклические системы. Например, из 1,3-дибромадамантана, используя натрий-калиевый сплав, может быть получен 1,3-дегидроадамантан:
.
А взаимодействие 1-бром-3-хлор-циклобутана с натрием приводит к бициклобутану:
.
Известен ряд разновидностей реакции Вюрца, получивших свои собственные названия. Это реакция Вюрца – Фиттига и реакция Ульмана . Первая заключается в конденсации алкил- и арилгалогенида под действием натрия с образованием алкилароматического производного. В случае реакции Ульмана в конденсацию обычно вводят арилйодиды, а вместо натрия используют свежеприготовленную медь, эта реакция позволяет с высоким выходом получать различные биарильные производные, в том числе, и несимметричные, содержащие заместитель в одном из ароматических ядер:
.
Как полагают, механизм реакции Вюрца состоит из двух основных стадий:
1) образование металлоорганического производного (если использется металл, а не заранее приготовленное металлоорганическое соединение):
RHal + 2Na = R–Na + NaHal,
2) взаимодействие образовавшегося, в данном случае, натрийорганического соединения с другой молекулой алкилгалогенида:
RHal + R–Na = RR + NaHal.
В зависимости от природы R и условий проведения реакции вторая стадия процесса может протекать по ионному либо по радикальному механизму.
Источники: ресурсы Интернет
http://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/REAKTSIYA_VYURTSA.html , конденсация алкилгалогенидов под действием Na (реже - Li или К) с образованием предельных углеводородов:

2RHal + 2Na -> R-R + 2NaHal,

где Hal - обычно Br или I. При использовании в р-ции разл. алкилгалогенидов (RHal и R"Hal) образуется трудноразделяемая смесь всех возможных продуктов (R-R, R"-R", R"-R).

В. р. легко протекает, если алкилгалогенид имеет большую мол. массу, а галоген связан с первичным атомом С. Процесс проводят при низких т-рах в сольватирующих р-рителях. Так, в ТГФ реакция осуществляется быстро и с хорошим выходом уже при - 80 °С.

Предполагается, что механизм р-ции включает образование ион-радикалов и радикалов:

Однако факт обращения конфигурации нек-рых оптически активных алкилгалогенидов (напр., 2-хлороктана в р-ции с Na) не исключает возможности гетеролитич. механизма.

реакция открыта Ш. Вюрцем в 1855 и используется главным образом для получения углеводородов с длинной углеродной цепью. В др. случаях, особенно при получении несимметричных ал-канов, применяют разл. модификации В. р., рассмотренные ниже.

Для синтеза жирноароматич. соед. используют модификацию Фиттига (р-цию Вюрца-Фиттига):

ArHal + RHal + 2Na -> Ar-R + 2NaHal

реакция открыта Р. Фиттигом в 1855. Часто с хорошим выходом образуются алканы с использованием реактива Гриньяра, напр.:

Несимметричные предельные углеводороды получают, используя медьорг. соед.:

Р-цию, подобную В. р., используют для синтеза элементоорг. соед. и бициклич. соед., напр.:

Лит.: Реакции металлоорганических соединений как редокс-проиессы, М., 1981, с. 16-38. Е.Г. Тер-Габриэлям.

Полезные интернет ресурсы:

Хотя можно представить, что RR образуется следующим образом:

где М – металл,

но все же основной реакционный поток протекает по другому пути:

Эта стадия протекает следующим образом:

Эта реакция может рассматриваться одновременно и как S N 2-, и как S E 2-замещение, а также как «синхронный» четырехцентровой процесс (Пальм, стр. 315-316):

Истинно синхронный механизм предполагает образование ковалентной связи между металлом М и галогеном Х. Однако процесс типа S E 2–S N 2, когда противоположные заряды возникающих ионов М + и Х - в активированном состоянии расположены рядом и электростатически стабилизируют друг друга, что равносильно частичному возникновению ионной связи – также можно назвать «синхронным».

(3) Побочно может протекать диспропорционирование:

Фактически олефин RCH=CH 2 образуется из субстрата RCH 2 CH 2 Cl в результате Е2-элиминирования под действием основания RСH 2 CH 2 y .

г) Катализируемая основаниями реакция Манниха

Реакция Манниха – это реакция аминометилирования. В качестве аминокомпонента используют вторичные и первичные алифатические и ароматические амины, в качестве метиленового компонента – формальдегид (в виде водного раствора – формалина или в виде параформа), реже – ацетальдегид. В качестве аминометилирующего агента может использоваться заранее приготовленный аминаль.

В качестве катализирующего реакцию основания может выступать сам аминокомпонент.

СН-кислота может вступать в реакцию аминометилирования также в енольной форме, с образованием циклического переходного состояния.

В кислых средах аминометилирование протекает по другому механизму, с участием высоко реакционноспособного интермедиата – карбений-иммониевого иона, являющегося азотистым аналогом формальдегида (здесь этот механизм не рассматривается; подробно см. Беккер, с. 301-302, 394-395; «Практикум», Беккер, с. 150-155; Марч, т. 3, с. 344-347).

3) Присоединение по двойным связям (обычно С=О)

К этому типу реакций карбанионов относится целая группа синтетически важных реакций:

а) Ацилирование сложных эфиров сложными эфирами (конденсация Кляйзена)

б) Альдольная конденсация и другие аналогичные реакции

Катализируемая основаниями альдольная конденсация основана на способности карбонильного соединения реагировать как в качестве карбокислоты (карбаниона, т. е. нуклеофила) за счет кислых a-С–Н-водородов, так и в качестве электрофила за счет электрофильного карбонильного углерода.

На последней стадии образовавшийся алкоголят-ион отрывает протон от ранее образовавшегося протонированного основания (или от растворителя), переходя в незаряженный продукт конденсации (b-гидроксиальдегид или b-гидроксикетон), при этом регенерируется катализатор (гидроксид-ион). Предпосылкой для осуществления этой стадии «нейтрализации» является более высокая основность алкоголят-иона (рК а 17-19) по сравнению с гидроксид-ионом (рК а 15,7). Если же оснόвный катализатор имеет более высокую основность, чем алкоголят-ион, то стадия «нейтрализации» не может осуществиться, и для конденсации необходимо применять эквимолярное количество основания. Пример такой конденсации будет рассмотрен позднее.


Если получающееся b-гидроксикарбонильное соединение все еще содержит кислый a-С–Н-водород, то в сильно щелочной водной среде оно также способно образовать соответствующий карбанион, который может присоединяться к молекуле исходного карбонильного соединения и т. д. [Сайкс, с. 117-118]. С другой стороны, поскольку оно содержит карбонильную группу, то может присоединять карбанион исходного соединения. В результате при действии сильного основания на такие альдегиды, как, например, ацетальдегид, образуются низкомолекулярные полимеры. Реакцию можно остановить после первого «простого» присоединения, используя слабые основания, например, карбонат калия.

Реакции альдольной конденсации могут осложняться процессом «кротонизации» (кротоновой конденсации). В цвиттер-ионной таутомерной форме b-гидроксикарбонильного соединения возникает обстановка сильного выталкивания с участием двойной связи в качестве проводника электронного смещения [Пальм, с. 377]:

В образующемся ненасыщенном карбонильном соединении двойная связь сопряжена с карбонильной группой, и это в некоторой степени способствует его образованию. Однако реакция кротонизации особенно характерна для систем с ароматическими заместителями, поскольку как цвиттер-ион, так и активированный комплекс, напоминающий продукт реакции, стабилизированы сопряжением двойной связи с p-электронной системой ароматического ядра. Результат реакции эквивалентен дегидратации соответствующего b-гидроксикетона (или альдегида).

Следует отметить, что дегидратация, вызванная действием основания – редкое явление. Как правило, отщепление молекулы воды протекает в условиях кислотного катализа.

Предложен и другой механизм кротонизации, предполагающий ее протекание через карбанион b-гидроксикарбонильного соединения [Сайкс, с. 118]:

Смешанные реакции альдольной конденсации, например, реакции с двумя разными альдегидами, обычно не имеют практического значения, поскольку при взаимодействии двух альдегидов с двумя полученными из них анионами образуется смесь четырех различных продуктов. Однако некоторые «смешанные» альдольные реакции могут представлять практический интерес в том случае, если один из карбонильных компонентов, например, бензальдегид, не может образовывать карбанион, а поэтому может только присоединять карбанион, генерированный из другого карбонильного компонента. Пример такой реакции приведен выше, при рассмотрении механизма кротонизации по Пальму. К этому типу реакций относится также реакция альдольной конденсации (с кротонизацией) ацетальдегида с бензальдегидом:

Обычная альдольная конденсация (т. е. несмешанная) невозможна для альдегидов, не имеющих a-С–Н-связей, а именно: для формальдегида HCHO, бензальдегида PhCHO или R 3 CCHO – и поэтому не способных образовывать карбанионы обсуждаемого типа. При взаимодействии любого из таких альдегидов с водным раствором основания гидроксильный ион просто присоединяется к карбонильной группе. Однако при использовании сильного основания в больших концентрациях такие альдегиды подвергаются окислительно-восстановительному диспропорционированию (реакция Канницаро), когда из двух молекул альдегида одна окисляется до соответствующей кислоты (в виде аниона), а другая восстанавливается до соответствующего спирта:

Поскольку формальдегид вследствие большой электроотрицательности карбонильной группы все же является карбокислотой, то он способен к своеобразной альдольной конденсации в щелочной среде:

Таким путем образуются полигидроксиальдегиды и кетоны, в том числе представители класса моносахаридов.

Если карбонильной компонентой, реагирующей с C–H-кислотным карбонильным соединением, является производное карбоновой кислоты (сложный эфир, ангидрид, галогенангидрид), то обязательно происходит конденсация наподобие кротоновой, только отщепляется спирт, карбоновая кислота или гидрогалогенид, соответственно. В результате получаются резонансно-стабилизированные анионы (еноляты) b-дикарбонильных соединений:

Вследствие своей небольшой основности анионы b-дикарбонильных соединений, как правило, не способны регенерировать из протонированного оснόвного «катализатора» свободное основание (например, алкоголят-ион), поэтому необходимо использовать эквимолярное количество основного агента. Если же X=OCOR или Hal, то необходим еще один моль основания; таким образом в таких случаях всего берут два моля основания: 1 моль – чтобы генерировать анион С–Н-кислотного карбонильного соединения, и еще 1 моль – чтобы нейтрализовать выделяющуюся кислоту RCOOH или HHal.

Необходимо отметить, что альдольная конденсация может протекать также по кислотно-каталитическому механизму:

В качестве катализаторов могут выступать как протонные кислоты, так и кислоты Льюса (например, BF 3). Кислотный катализатор повышает карбонильную активность и, кроме того, катализирует енолизацию кислотной компоненты. Енол благодаря оснόвным свойствам двойной связи атакует карбонильную группу как нуклеофильный реагент. Однако в кислой среде образовавшийся альдоль немедленно дегидратируется, т. е. в итоге происходит кротоновая конденсация.

См. также Реутов, т. 1, стр. 490-491.

РЕАКЦИЯ ВЮРЦА химическая реакция, позволяющая получать простейшие органические соединения – предельные углеводороды.

Сама реакция Вюрца заключается в конденсации алкилгалогенидов под действием металлического Na, Li или реже K:

2RHal + 2Na ® R–R + 2NaHal.

Иногда ее трактуют как взаимодействие RNa или RLi с R"Hal.

Реакция была открыта французским химиком-органиком Шарлем Вюрцем (Wurtz Charles (1817–1884) в 1855 при попытке получения этилнатрия из хлористого этила и металлического натрия.

Несмотря на то, что реакция Вюрца приводит к образованию новой углерод-углеродной связи, она нечасто применяется в органическом синтезе. В основном с ее помощью получают предельные углеводороды с длинной углеродной цепью, особенно она полезна при получении индивидуальных углеводородов большой молекулярной массы, и, как видно из приведенной схемы, для получения заданного углеводорода следует брать только один алкилгалогенид, так как при конденсации двух алкилгалогенидов получается смесь всех трех возможных продуктов сочетания. Поэтому если используется алкилгалогенид и натрий, реакцией Вюрца можно получить только углеводороды с четным количеством атомов углерода. Наиболее успешно реакция Вюрца протекает с первичными алкилйодидами. Очень низкие выходы целевого продукта получают при использовании метода Вюрца для вторичных алкилгалогенидов. Реакцию обычно проводят в диэтиловом эфире. Использование углеводородов в качестве растворителей уменьшает селективность реакции.

Однако если использовать заранее приготовленное металлоорганическое соединение, например алкиллитий, то можно получить и несимметричные продукты конденсации:

RLi + R"Hal ® R – R" + LiHal

В обоих случаях реакция сопровождается образованием большого количества побочных продуктов за счет побочных процессов. Это иллюстрирует пример взаимодействия этиллития с 2-бромоктаном:

В этом случае 3-метилнонан и ряд побочных продуктов в указанных молярных соотношениях образуются как продукт реакции Вюрца.

Кроме натрия, в реакции Вюрца использовались такие металлы, как серебро , цинк , железо , медь и индий.

Реакция Вюрца успешно применяется для внутримолекулярных конденсаций для построения карбоциклических систем. Так из 1,3-дибромпропана под действием металлического цинка и йодида натрия (в качестве промотора реакции) может быть получен циклопропан:

Можно построить и другие напряженные карбоциклические системы. Например, из 1,3-дибромадамантана, используя натрий-калиевый сплав, может быть получен 1,3-дегидроадамантан:

А взаимодействие 1-бром-3-хлор-циклобутана с натрием приводит к бициклобутану:

Известен ряд разновидностей реакции Вюрца, получивших свои собственные названия. Это реакция Вюрца – Фиттига и реакция Ульмана. Первая заключается в конденсации алкил- и арилгалогенида под действием натрия с образованием алкилароматического производного. В случае реакции Ульмана в конденсацию обычно вводят арилйодиды, а вместо натрия используют свежеприготовленную медь, эта реакция позволяет с высоким выходом получать различные биарильные производные, в том числе, и несимметричные, содержащие заместитель в одном из ароматических ядер:

Как полагают, механизм реакции Вюрца состоит из двух основных стадий:

1) образование металлоорганического производного (если использется металл, а не заранее приготовленное металлоорганическое соединение):

RHal + 2Na ® R–Na + NaHal,

2) взаимодействие образовавшегося, в данном случае, натрийорганического соединения с другой молекулой алкилгалогенида:

RHal + R–Na ® RR + NaHal.

В зависимости от природы R и условий проведения реакции вторая стадия процесса может протекать по ионному либо по радикальному механизму.

Владимир Корольков

Похожие публикации